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Abstract

In this study, the dynamic characteristics of a catenary system using the finite element method (FEM)
and dynamic modelling for developing a suitable pantograph at high speed is analyzed. First, the catenary
system of a high-speed railway is assumed to be a beam model. Next, an analysis program using finite
element analysis was performed. The pantograph of linear spring–mass system is assumed to be three-
degrees-of-freedom model for the finite element analysis. The analyses of the catenary based on the FEM
are executed to develop a pantograph that meets the necessary standards for high-speed rail vehicles. Using
a simulation of the pantograph–catenary system, the static deflection of the catenary, the stiffness variation
in the contact lines, the dynamic response of the catenary undergoing a constant moving load and the
contact force analysis were executed. From the pantograph–catenary analysis, the design parameters of a
pantograph could be optimized. Based on the design-parameter analysis, a pantograph with improved
parameters was found to be suitable for a high-speed rail vehicle.
r 2002 Elsevier Science Ltd. All rights reserved.

1. Introduction

At present, the high-speed railway that is focused on as the next generation transportation
system is characterized by high stability, high driving velocity and comfort, all of which are
uncommon foci of other transportation systems. An accompanying problem of the high speed of
the railway is ensuring stable current collection. For stable operation of a railway, the catenary
must be supplied with stable electrical power through solid contact with the pantograph. If the
railway speed is increased, the width of the catenary’s dynamical variation will increase. Contact

ARTICLE IN PRESS

*Corresponding author. Tel.: +82-31-400-5247; fax: +82-31-406-6242.

E-mail address: djpark@ihanyang.ac.kr, cshan@hanyang.ac.kr (C.-S. Han).

0022-460X/03/$ - see front matter r 2002 Elsevier Science Ltd. All rights reserved.

doi:10.1016/S0022-460X(02)01280-4



loss will then occur between the pantograph and the catenary. In addition, wear on the
pantograph is going to grow as electrical shock and damage occur [11]. Therefore, research for
understanding the current-collecting system’s dynamic characteristics and the decreasing width of
dynamic variation are needed. Progress has been made in research for assuring the ability of high-
speed driving as basic technology of a high-speed railway [3,9]. Ockendon and Taylor described
an approximate analytical formulation to determine contact force [12]. Manabe conducted
research on wave analyses to study the response between the pantograph and the catenary with
discrete support springs [6]. Wu and Brennan investigated the dynamic relation using the finite
element method (FEM) between the catenary and the pantograph [7]. Vinayagalingam studied
contact force variation and panhead trajectory by using finite difference methods [10]. Today’s
situation is that an active pantograph is proposed for more stable current collection through
maximizing the ability of the pantograph to follow the catenary [2–5].
To improve the performance of the pantograph, its dynamics should be more considered before

applying active system. Especially, many researchers for improving the system performance have
been suggested using sensitivity analysis as an efficient tool for checking variations in design
variables based on its dynamics. Vanderplaats and Arora found that sensitivity information can
be used as a design basis when re-designing a system [13,14]. Haug et al. investigated dynamic
sensitivity analysis, which is utilized for variation evaluation of mechanisms in the dynamic state
[12]. Jang and Han devised a way to conduct dynamic sensitivity analyses for studying state
sensitivity information with respect to changes in design variables [1]. Therefore, sensitivity
analysis is useful tool for improving dynamic characteristics of a pantograph.
The output of the pantograph system analyzed by catenary dynamics and pantograph dynamics

is contact force between catenary and pantograph as the ability of the stable current collection of
the pantograph can be determined by contact force. The objective of this research is to study state
sensitivity information for contact force with respect to changes in the design variables on
pantograph.
In this study, the catenary system of a high-speed railway was assumed to be a beam model.

Using FEM for analyzing a high-speed rail pantograph the catenary dynamics is organized for a
total of 10 spans and analyzed for confirming contact force more than 350 km/h. The pantograph
of a linear spring–mass system is assumed to be a three-degrees-of-freedom model (t.d.o.f.) model.
In sensitivity analysis, the direct differentiation method is used. Finally, the dominant design
variables of the system are suggested via analysis and trends for the redesign of the pantograph
are proposed.

2. Modelling of the catenary and the pantograph

Three types of centenary systems can be used in a high-speed railway—simple, stitched and
compound. The reason for having various types of catenaries is to unify the mechanical
characteristics of the contact wire contacting the pantograph.

2.1. Modelling of the catenary system

Fig. 1 shows the structure of a simple catenary system.
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The contact wire is the supplier of current through direct contact with the pantograph on the
roof of the train. The contact wire must adjust to the distance between the catenary and the
railroad. For mathematical modelling, a tensioning beam considering the high-frequency response
component is proposed. The messenger wire supports the contact wire for sustaining a flexible
distance from the track-suspending supporter. In this study, a messenger wire tension beam that is
given definite tension force similar to the contact wire is proposed. The dropper is the cable which
spreads the dynamic mass applied to the contact wire and which connects the contact wire with
the messenger wire to keep the contact wire from touching the messenger wire. Therefore, the
dropper is modelled as the mass and spring. At present, the dropper is set up with nine pieces per
63m span. The interval of each dropper is 4.5m in the vicinity of the supporter, the others are at
intervals of 6.75m. The dropper plays the important role of maintaining uniform height and equal
elasticity for the contact wire. The steady arm is the element that permits stagger for preventing
the contact wire from being worn on one side through continuous contact with one point of the
pantograph. The distance between each supporter is one unit of span. Its role is to push and pull
the contact wire horizontally. The steady arm is modelled as mass and spring in the contact wire.
The supporter, that is a messenger wire supported by a column, can be considered as a cantilever
when it is modelled. Similarly, with the steady arm, the supporter can be modelled as equal mass
and spring. The space between two supports is one span, and generally, each support is set at
intervals of 63m.
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Fig. 1. Structure of a simple catenary system of a high-speed rail vehicle.
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First, the motion of the equation of the messenger wire can be expressed as
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where mm; Tm; and EIm express the unit mass of the messenger wire, tension force, and bending
stiffness, respectively, kd is the stiffness of the dropper, and expresses the relevant force in relation
to the contact wire on the position of droppers. ks expresses the equivalent stiffness of the
supporter.
The motion of equation of the contact wire can be expressed as
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where mc; Tc; and EIc express the unit mass of the contact wire, tension force, and bending
stiffness, respectively. d is the delta function, and P is the contact force that is forced from the
pantograph to the contact wire. P is the function for time space. Motion of the equation for the
catenary is related to contact force. The contact wire and the messenger wires are connected to
each other. As a result the equation cannot be solved easily.
In this study, displacement of the catenary is obtained each time with the numerical analysis

using FEM. Using FEM, the catenary system can be solved analytically. However, the results of
FEM are from the view point of the catenary system with constructive dynamics. The catenary
system should be simplified for solving the pantograph dynamics from FEM. In this study, the
catenary system response is regarded as a stiffness function by the stiffness distribution from the
FEM. This approach has been investigated by many researchers. Wu [8] investigated the function
of the dynamic stiffness based on the catenary modelling. Balestrino et al. [2] derived the mass,
stiffness and damper functions of the catenary system from the experimental results. The aim of
the stiffness function is to simplify the pantograph system in time domain. To obtain the dynamic
response of the combined catenary and pantograph system, the catenary, that is a continuous
system, needs to be modelled as a spring with varying stiffness according to the position in a span.
The mass of the catenary that affects dynamic response of the combined catenary–pantograph
system are weak [2]. Therefore, the mass of the catenary is neglected in this study.
The three-span catenary is modelled as shown in Fig. 2 to obtain vertical stiffness along the

span of the catenary. The stiffness matrix is constructed using FEM. The catenary wire is
considered as beam a element. Then, an arbitrary force, that is, the uplift force of pantograph, is
given to one point of the middle span of the catenary. The first and the third span of the catenary
are only used to give continuity to the middle span and to avoid fixed boundary conditions. The
vertical stiffness of that point is the value of the force divided by the displacement.
Stiffness values derived are discontinuous between nodal points. Therefore, they should be

described using equivalent continuous functions for simulations. The equivalent functions are
obtained by using the maximum and minimum stiffness values and one span length. The
equivalent functions of stiffness related to position x along the catenary span are represented by
the following equations:

KðxÞ ¼ K0 1� a cos
2px

L

� �
; ð3Þ
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where

K0 ¼
Kmax þ Kmin

2
; a ¼

Kmax � Kmin

Kmax þ Kmin

:

Kmax and Kmin are the maximum and minimum stiffness values and L is one span length. The
equivalent functions of the catenary stiffness obtained by Eq. (3) are represented in Table 1 and
the equivalent functions are described by Fig. 3.
The solid line is the FEM result; the others are the approximated functions of catenary stiffness.

The stiffness of the catenary at time t that is touched by an object traveling at speed V can be
written as follows:

KðtÞ ¼ K0 1� a cos
2pV

L
t

� �
; ð4Þ

where

K0 ¼
Kmax þ Kmin

2
; a ¼

Kmax � Kmin

Kmax þ Kmin

:

Eq. (4) is the stiffness function of the caterary system by velocity and time. The contact force
between the catenary and the pantograph is derived by Eq. (4). For sensitivity analysis, the
approximated catenary system as a stiffness function is suitable because catenary is acting as an
external force input in pantograph dynamics. The stiffness, KðtÞ; is used as the dynamic variable
of the pantograph for the contact force in this study.
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Fig. 2. Three span catenary system modelling using FEM.

Table 1

Equivalent functions of the stiffness of each span

L (m) K0 (N/m) a K(x)

40.5 2435.6 0.1256 2435.6(1�0.1256 cos 0.155x)

45 2172 0.0823 2172(1�0.0823 cos 0.14x)

49.5 2126.6 0.1247 2126.6(1�0.1247 cos 0.127x)

63 1916.7 0.1776 1916.7(1�0.1776 cos 0.1x)
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2.2. Modelling of the pantograph

Contact loss determined by analyzing the contact force is an important factor for establishing
the dynamic design variables of the pantograph.
Contact loss with the catenary system occurred as follows:

* Wave propagation and elasticity irregularity.
* Stiffness variation at dropper connection points.
* Minimal unevenness at the connecting surface of the contact wire.
* Mass variation at the part of the steady arm for support and connection.
* Variation of coach vibration and wind pressure from outside the train.

Analyzing contact loss under these conditions, the pantograph should be modelled for
satisfying performance as follows:

* Ability of the stable current collection at a high speed.
* Quick reaction ability for variation of characteristic variables.
* Low deviation of vibration for the pantograph–catenary system at high speed.

For satisfying performance, the pantograph is of the GPU (large single plunger) type high-
speed rail. Fig. 4 shows the GPU pantograph.
Fig. 5 shows the dynamic modelling from the GPU pantograph.
In Fig. 5, the pantograph model is composed of a three lumped mass, a spring, a damper, a

friction damper between each mass, and the structure that supplies external force for each mass.
The t.d.o.f. pantograph modelling is defined in Fig. 2. The motion equation is derived at each
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Fig. 4. GPU pantograph.
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nodal point

m3 .y3 � c3 ’y2 � k3y2 þ c3 ’y3 þ k3y3 ¼ �PðtÞ þ F3; ð5Þ

m2 .y2 � c2 ’y1 � k2y1 þ ðc2 þ c3Þ ’y2 þ ðk2 þ k3Þy2 � c3 ’y3 � k3y3 ¼ F2; ð6Þ

m1 .y1 þ ðc1 þ c2Þ ’y1 þ ðk1 þ k2Þy1 � c2 ’y2 � k2y2 ¼ FL; ð7Þ

where F3 and F2 are lift forces by aero force at high speeds. FL is lift force of the base to contact
the caternary system. PðtÞ is the contact force between the pantograph and catenary. It is most
important to know the contact force between the contact wire and the panhead of the pantograph
and in determining the magnitude of the contact force and the displacement of the contact wire at
the contact point, the phenomenon that occurs during high-speed driving can be easily analyzed.
According to the magnitude of the contact force, the design values of the pantograph can be
determined.
From Eq. (4), the contact force is derived from the stiffness of the catenary system only. Using

Eq. (4) the contact force is as follows:

PðtÞ ¼ KðtÞy3 ¼ K0 1� a cos
2pV

L
t

� �
y3: ð8Þ

Eq. (8) calculates contact force by varying as vehicle velocity. In sensitivity analysis, y3 is also
affected by contact force from the catenary stiffness function. Eq. (5) is modified as follows:

m3 .y3 � c3 ’y2 � k3y2 þ c3 ’y3 þ k3 þ K tð Þð Þy3 ¼ F3: ð9Þ

Eq. (9) is the relation between the panhead and the catenary. The pantograph system is a linear
system itself; however, as the catenary stiffness function for varying as time is added to
pantograph dynamics, the pantograph system equation is a linear time varying system.

2.3. Validation of pantograph modelling

For sensitivity analysis, pantograph modelling should be investigated by experimental results.
The experimental equipment vibrated on the panhead with the same frequencies and
displacements as the behavior of a high-speed rail system. From Eq. (4), considering the length
of supporters, L; and vehicle velocity, V ; in cosine function, the frequency from 8 to 17Hz is
regarded as a high frequency caused by speeds more than 350 km/h. For example, if L is 63m and
V is 350 km/h, then frequency, o is 9.8Hz assuming as o ¼ 2pV=L: The vibration experiments
measured the acceleration of the panhead, crossbar, and plunger. Fig. 6 shows the vibration
experiments of the pantograph.
The acceleration signals using the spectrum analysis were compared with the modelling in the

frequency domain.
Figs. 7–9 show the comparisons between the experiments and modelling under 6.1, 9.8 and

14.3Hz. Comparing the experiments and modelling, the frequency was almost exact, and the
amplitude has some error for the experiment. From these results, the pantograph modelling is
valid for sensitivity analysis.
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3. Sensitivity formulation

In order to perform sensitivity analysis, state sensitivity equations must be derived with respect to
the design variables at the initial stage. In this study, the state variables of the system are as follows:

z ¼ y1 ’y1 y2 ’y2 y3 ’y3

� �T
; ð10Þ

where z is the state variable vector, y and ’y are displacements and velocities of each mass,
respectively. Design variables of this system are selected as

b ¼ b1 b2 b3 b4 b5 b6 b7 b8 b9

� �T
¼ m1 m2 m3 c1 c2 c3 k1 k2 k3

� �T
: ð11Þ

The dynamic equations of motion for the pantograph system can be expressed in the following
form:

’z ¼
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This equation has the form of a first order ordinary differential equation. In order to perform
sensitivity analysis, state sensitivity equations must be derived with respect to the design variables
at the initial stage. A general form of the first order differential sensitivity equations is

@’z

@b
¼

@f

@z
�
dz

db
þ

@f

@b
: ð13Þ

This equation can be written in the following compact matrix from:

’zb ¼ fz � zb þ fb; ð14Þ

where zARn; bARn; fARn; zARn�m; fzARn�n; and fbARn�m:
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n is the number of state variables and m is the number of design variables. In this case, n is 6 and
m is 9 from Eq. (12). zb is state sensitivity matrix with respect to the design variables and ’zb is the
time derivative of the state sensitivity matrix. For linear different equations, fz can be expressed by
system matrix A. From this idea, Eq. (14) can be re-written in the following form:

’zb ¼ A � zb þ fb: ð15Þ

Next, fb should be obtained from the last term of the state sensitivity analysis with respect to the
design variables; this term is expressed in following matrix form:

fb ¼ fb1; fb2; fb3; fb4; fb5; fb6; fb7; fb8; fb9½ 	6�9: ð16Þ
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Detailed derivations of the above are summarized in Appendix A. In order to solve the dynamic
and state sensitivity equations of the system, Eqs. (12) and (15) are simultaneously integrated.

4. Results of the sensitivity analysis

Various sensitivity analyses of the pantograph–catenary system are performed in the time
domain. In this study, sensitivity is evaluated for the contact force at various speeds (100–400 km/
h). The effects of the design variables of the pantograph on state sensitivity are examined and a

ARTICLE IN PRESS

(b)

(c)

(a) 0 5 10 15 20 25 300

0.5

1

1.5

A
m

pl
itu

de
 (

m
m

)

0 5 10 15 20 25 300

0.5

1

1.5

A
m

pl
itu

de
 (

m
m

)

0 5 10 15 20 25 300

0.5

1

1.5

Frequency (Hz)

A
m

pl
itu

de
 (

m
m

)

Fig. 9. Frequency spectrum at 14.3Hz, 1.5mm excitation. Experiment (- - -) and modelling (—); (a) panhead amplitude

(mm); (b) crossbar amplitude (mm); and (c) plunger amplitude (mm).

T.-J. Park et al. / Journal of Sound and Vibration 266 (2003) 235–260246



ARTICLE IN PRESS

100 150 200 250 300 350 400
-150

-100

-50

0

50

100

150

200

250

300

C
on

ta
ct

 f
or

ce
 (

N
)

100 150 200 250 300 350 400
-4000

-3000

-2000

-1000

0

1000

2000

3000

4000

5000

6000

C
on

ta
ct

 f
or

ce
 (

N
)

100 150 200 250 300 350 400
-1500

-1000

-500

0

500

1000

1500

2000

2500

3000

Velocity [Km/h]

C
on

ta
ct

 f
or

ce
 (

N
)

(a)

(b)

(c)

Fig. 10. Contact force sensitivity with respect to mass. Max–Min (—), Max ( � ), Min (?), average (—); (a) contact

force for m1; (b) contact force for m2; and (c) contact force for m3:

T.-J. Park et al. / Journal of Sound and Vibration 266 (2003) 235–260 247



dominant design variable is determined from the results. Standard deviation and average of the
contact force are mainly considered because of vibration with high frequency as the vehicle
velocity increases.
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4.1. Effects of the design variables

The effects of the design variables on state sensitivity are considered in the time domain. Fig. 10
shows the results of sensitivity analysis of the average contract force with respect to the three
masses. It shows that the sensitivity of the average contact force has constant values and variance
increases for vehicle speed by mass m1; m2 and m3:Mass m1 has comparatively smaller values than
m1 and m2:
Fig. 11 Shows the results of the sensitivity analysis of the average contract force with respect to

the three dampers. It shows that the sensitivity of the average contact force for vehicle speed is
affected by c2: Other dampers, c1 and c3 affect contact force, but c1 and c3 have small sensitivity
analysis values compared with c2:
Fig. 12 shows the results of sensitivity analysis of the average contract force with respect to the

three stiffnesses. It shows that the sensitivity of the average contact force for vehicle speed is
mainly k3: The sensitivity of k3 stiffness increases as the vehicle velocity increases.
Fig. 12 shows that the sensitivity of the average contact force for vehicle speed is affected by k2:

Other stiffnesses, k1 and k3 affect contact force, but k1 and k3 have small sensitivity analysis values
when compared with k2:

4.2. Dominant design variables

Dominant design variables can be examined based on state sensitivity analyses. In order to
check dominant design variables, a normalization process is required for dimension matching. In
this research, a 1% perturbation is performed for this process. Rank of the design variables vary
as the vehicle speed is increased.
Fig. 13 shows the average contact force for normalized design variables. Contact loss occurs

when average contact is a negative value. Fig. 14 shows the standard deviation of contact force for
the normalized design variables. From the results of Figs. 13 and 14, the variation and average of
contact force at high speed is affected by design variables, mass m3; mass m2; damper c1; and
stiffness k1: Damper c3 and stiffness k3 hardly affect contact force under the conditions as they
have constant values for the up lifting and aero forces.

4.3. Modified design variable

Through sensitivity analysis, the design variables m3; m2; c1 and k1 should be modified for
improving the performance of the pantograph. In this study, the design values, mass m2; mass m3

and stiffness k1 were modified to improve contact loss ratio.
Figs. 15–17 show standard deviation of each displacement changing the design values m3; m2;

and k1: The gray lines are the values of the early pantograph.
The standard deviation of each displacement should have values because the smaller deviation

of the pantograph vibration has a constant contact force. From this point of view, the values of
design variables maintaining a small value of the standard deviation were chosen.
Fig. 18 shows the results of the contact loss ratio between the early pantograph model and the

modified pantograph with sensitivity analysis. The contact loss ratio improved remarkably by
modifying design variables.
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Fig. 19 shows the result of the contact loss velocity between the early pantograph model and the
modified pantograph as the sensitivity analysis. The modified pantograph is almost completely
devoid of contact loss because the maximum value is larger than the difference between the
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Fig. 12. Contact force sensitivity with respect to stiffness. Max–Min (- - -), Max ( � ), Min (?), average (—); (a) contact
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maximum and the minimum at the 100–400 km/h velocity interval. Figs. 18 and 19 show the
possibility of improving not only the contact loss ratio, but also the velocity of the contact loss by
modifying design variables.
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5. Conclusions

In this study, dynamic performance is analyzed by the sensitivity of the pantograph. First, the
pantograph–catenary system is analyzed by FEM analysis. As contact force was the main factor
for pantograph performance, contact force has been analyzed. The uplift and aero forces were
assumed to be constant values. From various sensitivity analyses, useful sensitivity information is

ARTICLE IN PRESS

3 4 5 6 7 8 9 10
0.02

0.025

0.03

0.035

0.04

0.045

0.05

0.055

0.06

D
is

pl
ac

em
en

t [
m

]

3 4 5 6 7 8 9 10
0.015

0.02

0.025

0.03

0.035

0.04

D
is

pl
ac

em
en

ts
 [m

]

3 4 5 6 7 8 9 10
0.014

0.016

0.018

0.02

0.022

0.024

0.026

0.028

Mass 3 [kg]

D
is

pl
ac

em
en

t [
m

]

Current Value

(a)

(b)

(c)

Fig. 16. Standard deviation of the pantograph displacements for mass m3 by frequency inputs y1 (—), y2 (- - -), y3 (?):
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evaluated at various velocities with respect to design variables. The pantograph could be
improved by modifying the design variables through sensitivity analysis.
The conclusions of this paper are as follows:

1. Considering the responses at high speed, the contact wire and the messenger wire were
modelled as beams with bending stiffness and tension.

2. Catenary was analyzed using FEM with beam modelling.
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3. The stiffness function from the FEM analysis of catenary was applied to the pantograph
dynamics and sensitivity analysis.

4. The pantograph dynamic equations are derived for applying sensitivity analysis and verified by
experiment results.

5. Through sensitivity analysis for contact force, design variables were modified to reduce contact
loss.

6. The pantograph performance could be improved from the modified design variables.
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Appendix A. Sensitivity formulations

Sensitivity functions for RHS terms of Eq. (16) are derived as follows with nine sensitivity
equations for each design variable obtained from partial derivative operation with respect to
design variables:
(1) For b1 ¼ m1:

fb1 ¼

0

k1 þ k2

m2
1

x1 þ
c1 þ c2

m2
1

x2 �
k3

m2
1

x3 �
c2

m2
1

x4 �
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(2) For b2 ¼ m2:

fb2 ¼
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(3) For b3 ¼ m3:

fb3 ¼
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(4) For b4 ¼ c1:
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(5) For b5 ¼ c2:
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(6) For b6 ¼ c3:
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(7) For b7 ¼ k1:
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(8) For b8 ¼ k2:
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(9) For b9 ¼ k3:
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Appendix B. Nomenclature

m1 mass of the pantograph frame
m2 mass of the pantograph plunger
m3 mass of the pantograph panhead
c1 damping coefficient between the vehicle body and the frame
c2 damping coefficient between the frame and the plunger
c3 damping coefficient between the plunger and the panhead
k1 stiffness coefficient between the vehicle body and the pantograph frame
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k2 stiffness coefficient between the frame and the plunger
k3 stiffness coefficient between the plunger and the panhead
FL static uplift force of the pantograph
F2;F3 aerodynamic uplift force
mm mass of the messenger wire element
mc mass of the contact wire element
EIm bending stiffness of the messenger wire
EIc bending stiffness of the contact wire
Tm tension of the messenger wire
Tc tension of the contact wire
um displacement of the messenger wire element
uc displacement of the contact wire element
kd equivalent stiffness of the dropper
ks equivalent stiffness of the support tower
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